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Introductory Notions

Definition

A plane partition is an array π = (πi ,j)i ,j≥1 of nonnegative integers
such that π has finite support (i.e. finitely many nonzero entries)
and is weakly decreasing in the rows and columns.

Example

3 2 2

1 1
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Introductory Notions

Definition

The sum of all of the entries in a plane partition π is the size of π.
We denote this |π|.

Theorem (MacMahon)

The number of plane partitions with size n is the coefficient of qn

in

M(q) =
∏
i≥1

(
1

1− qi

)i

.
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Motivation

Definition

Define
Q(π) =

∑
(i ,j ,k)∈π

r i s j tk

Q(π) =
∑

(i ,j ,k)∈π

r−i s−j t−k .

Example

3 2 2

1 1

Given the plane partition π as
before,

Q = 1 + r + r2 + s + rs + t + rt + r2t + t2

Q = 1 + r−1 + r−2 + s−1 + r−1s−1 + t−1 + r−1t−1 + r−2t−1 + t−2.
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Motivation

Definition

From Q and Q define

F = Q − Q

rst
+ QQ

(1− r)(1− s)(1− t)

rst
=

∑
i ,j ,k

cijk r
i s j tk .

Definition

The equivariant vertex measure is obtained by “swapping the roles
of addition and multiplication” in F :

w(π) =
∏
i ,j ,k

(iu + jv + kx)−cijk .

We use the variables u, v , and x instead of r , s, and t post-swap.
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Motivation

Maulik, Nekrasov, Okounkov and Parharipande give a generating function
for w(π) in their 2005 paper.

Theorem (MNOP, 2005)

Z :=
∑
π

w(π)q|π| = M(q)−
(u+v)(v+x)(x+u)

uvx

Example (in lieu of proof. . . )

Consider the unique plane partition π of size 1.
Only the i = 1 term of M(q) yields any q1 terms:

[q1](1− q)−
(u+v)(v+x)(x+u)

uvx =
(u + v)(v + x)(x + u)

uvx
.

w(π) = (−v − x)(−u − x)(−u − v)(−x)−1(−v)−1(−u)−1

=
(v + x)(u + x)(u + v)

uvx
.
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Motivation

The proof of Z is geometric. One could hope for a combinatorial
proof; however, that is currently out of reach.

The subject of this talk is a warm-up problem for this: the same
problem one dimension down.
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In two dimensions. . .

Definitions

Q2(λ) =
∑

(i ,j)∈λ

r i s j

Q2(λ) =
∑

(i ,j)∈λ

r−i s−j

F2(λ) = F2 = −Q2 −
Q2

rs
+ Q2Q2

(1− r)(1− s)

rs
=

∑
i ,j

cij r
i s j

Kyla Pohl Jack Combinatorics of the Equivariant Edge Measure



In two dimensions. . .

Example

Note that Q2 assigns a monomial to each box in a shape λ which
describes the (matrix) coordinates of the box.

1 r r2

s rs
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wMNOP

Next, we define an operation on Laurent polynomials which
switches the roles of addition and multiplication.

Definition

Let G =
∑

i ,j di ,j r
i s j be a Laurent polynomial in the variables r

and s with no constant term. Then define the swap of G to be

swap(G ) =
∏
i ,j

(iu − jv)di,j .

Things to note: sign convention, variable changes

Definition

The equivariant edge measure is

wMNOP(λ) := swap(F2(λ)) =
∏
i ,j

(iu − jv)cij .
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So what is wMNOP?

Reminder: Our goal is to give some combinatorial meaning to
wMNOP.

It turns out that wMNOP is (up to convention) the Jack Plancherel
measure.
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Jack Plancherel Measure

Theorem (Jack Plancherel Measure)

Set

h∗(i , j) = u + u(λi − j) + v(λ′
j − i)

h∗(i , j) = v + u(λi − j) + v(λ′
j − i).

We have
1 =

∑
λ⊢n

n!(uv)n∏
□∈λ h

∗(□)h∗(□)
.

For our result, we need a slightly different version of this.

Definition

Define

wJack(λ) =
1∏

□∈λ h
∗(□)h∗(□)

.
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Main Result

Theorem (P.-Young)

We have

wJack = −wMNOP.

The notion of wMNOP comes from areas of algebraic geometry
(specifically, Hilbert schemes and Donaldson-Thomas theory) in
which Jack polynomials frequently arise. However, this particular
connection appears to be new.
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Back to Motivations

So what of the three-dimensional version of this problem?

My collaborators and I are
currently thinking about
it.

It’s much more difficult,
but we now know that
w(π) is an analogue for
plane partitions in the
Jack Plancherel measure.
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Thank you!

Kyla Pohl Jack Combinatorics of the Equivariant Edge Measure


