The Hilbert Scheme of Points in the Plane

Kyla Pohl

May 2025

1 Introduction

These notes are based on Haiman's 1998 paper "t,q-Catalan Numbers and the Hilbert Scheme." We follow it closely starting at the beginning of Section 2 all the way through Proposition 2.4. Red text indicates uncertainty on my part. Feel free to contact me kyla.pohl@gmail.com with clarification if you are inclined to do so.

Let k be a field of characteristic 0. We use the French convention for Young diagrams and zero-index the cells in this note.

2 Definitions

Definition 1. The punctual Hilbert scheme of the plane, $\mathbb{H}^n = Hilb^n(\mathbb{A})$, is the set of all ideals I such that

$$\dim_{\mathbb{K}}(\mathbb{K}[x,y]/I) = n. \tag{1}$$

Definition 2. Given $\mu \vdash n$, let

$$\mathcal{B}_{\mu} = \{ x^{h} y^{k} \, | \, (h,k) \in \mu \}.$$
(2)

Example 3. Let $\mu = (4, 4, 2, 2)$. Then \mathcal{B}_{μ} contains all of the following monomials.

Example 4. Let $\mu = (2, 1)$. Then \mathcal{B}_{μ} contains all of the following monomials.

1 *y*

Definition 5. Define

$$U_{\mu} = \{ I \in H^n \,|\, \mathcal{B}_{\mu} \text{ spans } \mathbb{k}[x, y]/I \}.$$
(3)

Example 6. We use our previous example involving $\mu = (2, 1)$. The ideals

• $\langle x^2, xy, y^2 \rangle$,

- $\langle x^2 y, xy, y^2 \rangle$,
- $\langle x^2, xy, y^2 x^2 \rangle$

are in $U_{(2,1)}$.

Since $\dim_{\mathbb{K}}(\mathbb{K}[x,y]/I) = n$ for $I \in H^n$ by definition, \mathcal{B}_{μ} is a basis of $\mathbb{K}[x,y]/I$. Hence for each monomial $x^r y^s$ and ideal $I \in U_{\mu}$ there is a unique expansion

$$x^r y^s \equiv \sum_{(h,k)\in\mu} c_{h,k}^{rs}(I) x^h y^k \pmod{I},\tag{4}$$

whose coefficients depend on I and thus define a collection of functions $c_{hk}^{rs}: U_{\mu} \to \mathbb{k}$.

Proposition 7. The sets U_{μ} are open affine subvarieties which cover H^n . The affine coordinate ring $\mathcal{O}_{U_{\mu}}$ is generated by the functions c_{hk}^{rs} for $(h,k) \in \mu$ and all (r,s).

Proof. The sets U_{μ} cover H^n because: for every ideal I in a polynomial ring there is a basis \mathcal{B} modulo I consisting of monomials such that every divisor of a monomial in \mathcal{B} is also in \mathcal{B} . (This is a fact of Gordan, often attributed to Gröbner basis theory.) For $I \in H^n$ it is clear that such a basis must be \mathcal{B}_{μ} for some $\mu \vdash n$.

We now blackbox some facts. Let M_N be the set of all monomials in x and y of degree at most N. We write $G^n(\Bbbk M_N)$ for the Grassmann variety of n-dimensional quotients of the linear span of M_N . There is an injective map

$$H^n \to G^n(\Bbbk M_N) \tag{5}$$

which defines the structure of H^n as a scheme. The sets U_{μ} are preimages under this embedding of standard affines on $G^n(\Bbbk M_N)$ and the standard coordinates on these affines reduce to the functions c_{hk}^{rs} . The image of U_{μ} is closed in the corresponding standard affine on $G^n(\Bbbk M_N)$, so the functions c_{hk}^{rs} generate $\mathcal{O}_{U_{\mu}}$. \Box

For each $I \in H^n$, the scheme $S = Spec(\Bbbk[x, y]/I)$ has a finite number of points. If we assign each point p in S a multiplicity m_p equal to the length of the local ring $\mathcal{O}_{p,S} = (\Bbbk[x, y]/I)_p$ then these multiplicities sum to n. In this way, we associate with I an n-element multiset $\pi(I) \in \mathbb{A}^2$.

Example 8. Let $I = (x^3, y) \subseteq k[x, y]$. On what points does this ideal vanish? Only at (0, 0). So we say the subscheme at I is concentrated at (0, 0). Note that k[x, y]/I has basis $\{1, x, y\}$ so it is dimension 3 as a k vector space. The length at the point (0, 0) is 3, so $\pi(I)$ is $\{(0, 0), (0, 0), (0, 0)\}$.

Example 9. Let $I = (x(x-1), y) \subseteq k[x, y]$. The points which vanish on I are (0, 0) and (1, 0). A basis for k[x, y]/I is $\{1, x\}$. The multiset $\pi(I)$ is $\{(0, 0), (1, 0)\}$.

This next fact is blackboxed once again: The *n*-element multisets contained in \mathbb{A}^2 form an affine variety $\operatorname{Sym}^n(\mathbb{A}^2)$. The map $\pi: H^n \to \operatorname{Sym}^n(\mathbb{A}^2)$ is called the Chow morphism.

Proposition 10. The Chow morphism $\pi : H^n \to Sym^n(\mathbb{A}^2)$ is a projective morphism. (In other words, it factors through projective space.)

Proof. Omitted.

3 The Torus Action

The two dimensional torus group

$$T^{2} = \{(t,q) \mid t, q \in \mathbb{k}^{*}\}$$
(6)

acts algebraically on \mathbb{A}^2 by $(t,q) \cdot (\xi,\zeta) = (t\xi,q\zeta)$, or equivalently on $\mathbb{k}[x,y]$ by $(t,q) \cdot x = tx$ and $(t,q) \cdot y = qy$. There is an induced action of H^n which is given by $(t,q) \cdot c_{hk}^{rs} = t^{r-h}q^{s-k}c_{hk}^{rs}$. Why? Because (4) must remain invariant. Note $(t,q) \cdot I = \{p(t^{-1}x,q^{-1}y) \mid p(x,y) \in I\}$.

An ideal $I \in H^n$ is a T^2 fixed point if and only if I is spanned by monomials. Why? Such an ideal must be of the form

$$I_{\mu} = (x^{h}y^{k} \mid (h,k) \notin \mu) \tag{7}$$

for some partition μ of n. Note the subscheme of \mathbb{A}^2 defined by such an ideal I_{μ} is concentrated at the origin, the sole T^2 fixed point of \mathbb{A}^2 .

Lemma 11. Every ideal $I \in H^n$ has a torus fixed point in the closure of its orbit. We have $\lim_{a\to 0} \lim_{b\to 0} (a, b) \in I = I_{\mu}$ for some partition μ of n.

Proof. Omitted.

4 Main Theorem

Theorem 12. The punctual Hilbert scheme H^n of \mathbb{A}^2 is smooth of dimension 2n.

Note: "Smooth" means the same dimension everywhere.

Note: This is special to the two dimensional setting. In three dimensions, we can't say much besides the parity.

Proof. It suffices to verify smoothness near each T^2 fixed point I_{μ} . Why? I don't know. This is probably from Lemma 11. Under $\pi : H^n \to \text{Sym}^n(\mathbb{A}^2)$ we can see that the image $\pi(U_{\mu})$ is dense in $\text{Sym}^n(\mathbb{A}^2)$. So U_{μ} has dimension at least 2n.

The maximal ideal I_{μ} in $\mathcal{O}_{U_{\mu}}$ is given by

$$m = (c_{hk}^{rs} \mid (h,k) \in \mu, (r,s) \notin \mu).$$

$$\tag{8}$$

Why? Well, for $(r,s) \in \mu$ we have $c_{hk}^{rs} = 0$ when $(h,k) \neq (r,s)$ and $c_{rs}^{rs} = 1$, so we omit these c_{hk}^{rs} from the ideal.

Plan: Find 2n of the coordinate functions c_{hk}^{rs} which span the cotangent space m/m^2 . This will show that $\dim(m/m^2) = 2n$, so H^n is smooth at I_{μ} .

With this in mind, it is convenient to think of each c_{hk}^{rs} as an arrow from (r, s) to (h, k) overlaying the diagram μ .

Example 13.

We now single out two special coordinate functions at each square (h, k) in μ . Let (f, k) be the top square in column k and let (h, g) be the last square in row h.

Let $u_{hk} = c_{f,k}^{h,g+1}$ and $d_{hk} = c_{h,g}^{f+1,k}$. These will be our 2n spanning parameters for m/m^2 . Multiply (4) through by x and then expand both sides by (4) again.

$$\sum_{(h,k)\in\mu} c_{h,k}^{r+1,s}(I) x^h y^k \equiv x^{r+1} y^s$$
(9)

$$\equiv x \cdot \sum_{(f,g)\in\mu} c_{f,g}^{r,s}(I) x^f y^g \tag{10}$$

$$\equiv \sum_{(f,g)\in\mu} c_{f,g}^{r,s}(I)x^{f+1}y^g \tag{11}$$

$$\equiv \sum_{(f,g)\in\mu} c_{f,g}^{r,s}(I) \left(\sum_{(h,k)\in\mu} c_{h,k}^{f+1,g}(I) x^h y^k \right) \pmod{I}$$
(mod I) (12)

This yields

$$c_{h,k}^{r+1,s} = \sum_{(f,g)\in\mu} c_{f,g}^{r,s} c_{h,k}^{f+1,g}.$$
(13)

Modulo m^2 , the terms on the RHS of (13) reduce to zero besides one: $c_{h-1,k}^{r,s}$. (And $c_{h-1,g}^{r,s} = 0$ if h = 0). So in m/m^2 , we have

$$c_{h,k}^{r+1,s} = c_{h-1,k}^{r,s} \text{ (or 0 if } h = 0).$$
 (14)

We can do something analogous if we multiply (4) by y. We get

$$c_{h,k}^{r,s+1} = c_{h,k-1}^{r,s} \text{ (or } 0 \text{ if } k = 0).$$
(15)

Equations (14) and (15) say that we can slide arrows in our picture up, down, left, or right without their values modulo m^2 provided we keep the arrow head inside μ and the tail outside. More generally, as long as we kep the tail in the first quadrant and outside of μ , we may even move the head across the x- or y- axis. When this is possible, the value of the arrow is zero.

Which arrow survive? Only the $u_{h,k}$ and $d_{h,k}$. Northwest and west arrows are the $u_{h,k}$. Southwest and south arrows are the $d_{h,k}$. There are no north, east, or northeast arrows. All southwest arrows are zero.

Since we have found our 2n spanning elements, we can conclude that H^n is smooth as claimed. The previous lemma shows that H^n is connected. Smooth and connected implies irreducible.