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1. Introduction 

In [9], A. Garsia and the present author introduced a new bivariate 'q-analog' of the 
familiar Catalan numbers 

l( n) 
C n - n +  1 

Our ( t , q ) - C a t a l a n  numbers 

Cn(t,q) (1.2) 

are defined through a peculiar  formula,  (1 .10)  below, which expresses them as rational 

funct ions o f  t and  q. In [9], making  heavy use o f  the theory o f  Macdona ld  polynomials ,  

we were able to establish that the specializations 2 

Cn(1,q) and q(~)Cn(q-l,q) (1.3) 

* E-mail: mhaiman@macaulay.ucsd.edu. 
l Supported in part by N.S.F. Mathematical Sciences grants DMS-9119355 and DMS-9400934. 
2 As written, the defining formula would have vanishing denominators for these specializations, which should 
be understood as limits - -  but the point is moot since are going to prove that Cn(t, q) is actually a polynomial. 
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reduce to well-known q-analogues of the Catalan numbers: the first to the Carlitz- 
Riordan [5] q-Catalan numbers defined by 

n--I 

Cn(q) = ~ qkCk(q)Cn_L_k(q), Co(q) = 1, (1.4) 
k=0 

and the second to 

1 [2n I (1.5) 
[n-l- 1]q n q' 

where as is customary we set [k]q = (1 -q~) / (1  -q) ,  [k]q! = [1]q[2]q... [k]q, and 
[hi = [n]q!/[k]q![n - k]q!. k q 

More generally, we define for each m t>0 a (t,q)-Catalan-like sequence 

c~m)(t,q), (1.6) 

in which our original (t,q)-Catalan numbers are the case m = 1. Then we show 
in [9] that c~m)(1,q) counts lattice paths that stay above the main diagonal in an 
n × mn rectangle, according to the area below the path (this is what the Carlitz-Riordan 
numbers Cn(q) count in the case of an n × n square), and that 

1 [ ( m + l ) n J  (1.7) 
q m ( 2 ) C ( n m ) ( q - l ' q )  - -  [mn + 1]q n ~q" 

We now recall the definition of c~m)(t, q) from [9]. For each partition/~ of n, and 
each square x in the Ferrers diagram of/~, we define the leg l(x), the arm a(x), the 
co-leg l'(x), and the co-arm a'(x) o fx  to be respectively the numbers of squares above, 
to the right of, below, and to the left of x, with the diagram oriented in the French 
manner as shown here. 

a t 3Y a 

l, 

(1.8) 

Note that l'(x) and a'(x) are simply the row and column coordinates of  x, indexed 
from (0, 0), while l(x)+ a(x)+ 1 is the hook length of x. Associated with the partition 
# is a statistic n(#) which may be variously defined as 

n(p)= ~ l ( x ) =  ~-~l'(x)= ~ ( i - 1 ) l ~ i =  ~i ( 2 ' ) .  (1.9) 
xEll xEl~ i " 
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Here and below, #/ denotes the partition conjugate to/z. 
This given, we set 

C~m)(t,q) = 

tmn(~)qmn(~')(1--t)(1--q)(Hx~\(O,o)(l--tt '(x)qa'(x)))(Zx~ tt'(X)qa'(x) ) 

Z I~l:n H ~ E ( 1  - tl+t(X) q -a(x) )( 1 - t-t(X) q l+a(x)) 

(1.10) 

where /~ ranges over all partitions of n. 
Our formula for c(~m)(t,q) originated in connection with a series of conjectures on 

diagonal harmonics [13]. Beginning with the polynomial ring 

Q[X, Y] = Q[xl, yl,x2, y2,. . . ,x,, y,], (1.11 ) 

let the symmetric group Sn act diagonally, that is, by 

tr p(xb Y l . . . . .  Xn, Yn ) = P(X~o ), Y~(1) . . . . .  X~(n), Yo(n) ). (1.12) 

Next letting I be the ideal generated by all S,-invariant polynomials without constant 
term, consider the quotient ring 

R. = Q[X, Y]/I. (1.13) 

The space of diagonal harmonics is the Macaulay inverse system to R.: 

11. = { f (X,  Y): p(OX, OY)f(X, Y) = 0 for all p(X, Y) • I},  (1.14) 

where p(OX, OY) denotes the differential operator obtained by substituting for the 
variables xl ,yl  ..... xn, yn the corresponding partial derivative operators OXl, Oyl ..... 
Ox., O y.. 

R. and Hn are finite-dimensional S. modules, doubly graded by x-degree and y- 
degree. One easily shows [13] that the two are isomorphic as doubly graded S. modules. 
Among several conjectures of a combinatorial nature concerning H. is that its subspace 
H. ~ of &,-alternating elements - -  that is, its isotypic component corresponding to the 
sign character e of S. - -  has dimension equal to the Catalan number C..3 Taking into 
account the grading, we may define a Hilbert polynomial 

Dn(t,q) = Z thq~ dim(H~)h,k, (1.15) 
h,k >~O 

where (Hn~)h, k denotes the doubly homogeneous component of bi-degree (h, k) in H~. 
This polynomial D,(t,q) should then be a (t,q)-analog of C,. 

Now it develops that there is a connection, pointed out originally by C. Procesi, 
to whose insight this work owes a great deal, between the diagonal harmonics and 

3 Another conjecture bearing on the special significance of the the alternating elements is that Hn ~ minimally 
generates Hn as an inverse system. 
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the Hilbert scheme Hilb"(A2). Pursued to its end - -  modulo some as yet unproven 

geometric hypotheses - -  this connection suggests a formula analogous to (1.10) for the 
entire doubly graded character of  Rn and Hn, and not only its alternating component. In 
[9] we have shown that all the earlier combinatorial conjectures follow from this one 
master formula, a fact which, although proving none of the conjectures, tends strongly 
to confirm their validity. 

Specializing to the sign character yields (1.10), and with it the conjecture that 

Cn(t,q) = Dn(t,q), (1.16) 

and in particular that C,(t, q) is a polynomial with non-negative integer coefficients. 
Our purpose here is to work out the necessary geometry to explain how formula 

(1.10) comes about. In the process, we shall prove that 

for all integers m>~O and n>>, 1, c~m)(t,q) is a polynomial in t and q, 
and 

for m sufficiently large (n fixed), this polynomial has non-negative coefficients. 

We shall also state, but unfortunately we cannot yet prove, the precise cohomology 
vanishing theorem needed to extend the second statement to all m 1> 0, and in particular 
to the original (t, q)-Catalan case m = 1. 

As we shall see, (1.10) is one side of an identity known as the Atiyah-Bott Lefschetz 
formula [1], which equates it with an Euler characteristic of  traces for a toms group 
action on certain sheaf cohomology modules. In this case they are the cohomology 
modules of ample line bundles on the zero fiber H~ of the punctual Hilbert scheme 
H" = Hilb"(A2). We confine attention to (1.10) rather than the more general formula 
associated with the whole space of  diagonal harmonics, because the latter would involve 
the introduction of an additional scheme whose required properties are as yet merely 
conjectural. 

To complete this introduction, we give a brief outline of  the development to follow, 
hoping to ease the reader's task of  retaining perspective in the midst of the details. 

Let 9/ denote the ideal in Q[X, Y] generated by all Sn-alternating polynomials, and 
let m be the homogeneous maximal ideal (Xl, yi . . . . .  x,, yn). One easily proves that the 
space 9 / / m 9 / - -  the minimal generating space for the ideal 9 / - -  is isomorphic to the 
space of Sn-alternating diagonal harmonics H i. More generally, we may consider the 
space 

9/m/m9/m, (1.17) 

and it is the Hilbert polynomial of this space, for large m, that we shall identify as 
c(nm)(t,q). 

The first step is to review the structure of the Hilbert scheme, its natural toms 
action, and its local description near the toms fixed points, all in very explicit local 
coordinates, as these will be essential ingredients in the final formula as well as in the 
subsequent steps of  the argument. 
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The second step is to observe that the Hilbert scheme is a blow-up of the symmetric 
power Symn(A2), and as such is equipped with an ample line bundle (9(1), corre- 
sponding to a square root of  the exceptional divisor for the blow-up. This ultimately 
provides the link to the spaces 9~m/mg~ m. 

The third step is to study the zero fiber H~ in the Hilbert scheme. Our main new 
geometric result, Proposition 2.10, is that H~ is isomorphic to a complete intersection 
subscheme of the universal scheme H~_. As such, H~ is Cohen-Macaulay, and of 
crucial importance for us, its structure sheaf has an explicit locally (gH~-free resolution, 

providing another key ingredient for the final formula. 
The fourth step is to prove that C(1) is the highest exterior power of the tautological 

bundle, contributing the last ingredient of the formula. 
With these steps completed, we observe (Proposition 2.13) that there is a natural 

map 

9.1m/mg.I "~ --+ H°(H~, C(m)), (1.18) 

which is an isomorphism for m large. For m large we also have, by Serre's theorem, 

Hi(H~,(_9(m)) = 0 for all i > 0, (1.19) 

since (_9(1) is ample for the projective variety H i .  
This given, the Atiyah-Bott theorem yields us a formula for the Hilbert polynomial 

D~m~(t, q) of the doubly graded space 91m/mg.l m. The formula can be fully evaluated 

with the aid of the preceding steps, and reduces to none other than (1.10). This proves 

c~m)(t,q) = D~m)(t,q) (1.20) 

for all sufficiently large m (n held fixed). If we had isomorphism in (1.18) and 
the higher cohomology vanishing (1.19) for all m, we could further conclude that 
c~m)(t,q)=D~m~(t,q) for all m. With (1.19) alone, we could still conclude that 
c~m~(t,q) is a polynomial with positive integer coefficients, the Hilbert series of 
H°(H~, (9(m)), whether or not the latter space is isomorphic to 91m/mg.1 m. 

2. Description of the Hilbert scheme 

In order to explicitly evaluate the Atiyah-Bott formula in Section 3, we need con- 
siderable preliminary groundwork on the Hilbert scheme and its zero fiber, which we 
carry out in this section. We start by reviewing the definition and some well-known 
facts about the Hilbert scheme, making the details a bit more explicit than is custom- 
ary, as we shall need quite a precise picture later on. As we turn to the steps of  the 
argument outlined at the end of Section 1, we come to results which we believe to be 
new - -  notably, the Cohen-Macaulayness of the zero fiber (which is also the Hilbert 
scheme of the local ring at a point) and the realization of the Hilbert scheme as a 
particular blow-up of the scheme Symn(A2). 
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Let A2 = Spec k[x, y] be the affine plane over an algebraically closed field. All 
schemes considered will be quasi-projective over k, and we take the ‘classical’ view that 
the underlying set of a scheme is its set of closed points, for instance, the underlying 
set of A2 is k x k. We shall assume whenever dealing with the Hilbert scheme of order 
n that the characteristic of the ground field is either zero or is greater than n. This is 
necessary in order for Weyl’s theorem on the ring of invariants k[X, YISn to hold - 
see the proofs of Propositions 2.2 and 2.10. 

The punctual Hilbert scheme of the plane, H” = Hilb”(A*), is the set of all ideals 
I C k[x, y] such that dimk(k[x, y]/Z) = n. It is a scheme, in a manner that we shall clar- 
ify in a moment. Viewed another way, H” parametrizes subschemes S C A2 for which 

S = Spec(& A/O is zero-dimensional, of length n. Generically, such a subscheme S 
is just a set of n points in A*, regarded as a reduced subscheme. Subschemes 5’ of this 
form describe a dense open subset of H”, and one may think of the Hilbert scheme as 
a kind of compactification of the space of n-point subsets of A2, which retains extra 
information in the limit when some or all of the points coincide. 

Hilbert schemes were defined - in much greater generality than here - by 
Grothendieck [12]. The punctual Hilbert scheme of the plane has received particular at- 
tention [4,6-81 because of its special properties. Namely, it is smooth and irreducible, 
neither of which is true of Hilb”(A*) for general m [7,15]. For an excellent survey of 

the subject to 1985, see [16]. 
For our purposes we need to describe the scheme structure of H” via explicit 

coordinates on open afline subsets, indexed by partitions p of n. Given such a 
partition p, let 

BP = {xhyk : (h, k) E p}. (2.1) 

Recall that our indexing convention for a square (h, k) in the diagram of p is that h 
and k are its co-leg and co-arm, that is, its row and column indices, numbered starting 

with ZCrO.4 ThUS &?((4,4,2,2), for CXaIUpk, COUPES the IUOnOmialS 

x3 x3y 

X2 x*y 
(2.2) 

X xy xy* xy3 

1 Y Y2 Y3. 

We now define 

Up = {I E H” : BP spans k[x, y]/Z}. (2.3) 

Here we really mean that image of BP modulo I spans k[x, y]/Z. Of course this makes 
BP a basis modulo I, since dim,@[x, y]/Z) = n. Since gr is a basis, for each monomial 

’ For readers accustomed to English diagrams, note that in French and English alike the rows represent the 
parts of tbe partition, so the abscissa coordinate is the row index while the ordinate is the column index. A 

truly Cartesian diagram convention would represent the parts by the columns. 
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xry  ~ and ideal I E Uu there is a unique expansion 

xry s =-- ~ C~(I)xhy k (mod I) ,  (2.4) 

(h,k)E,u 

whose coefficients depend on I and thus define a collection of functions c~  on Uu. 

Proposition 2.1. The sets U u are open affine subvarieties 5 which cover H ~. The affine 
coordinate rin9 (9tj, is 9enerated by the functions Chr~, for (h, k) E # and all (r,s). 

Proof. The sets U~, cover H n because of the following fact, often regarded as a part 

of  Gr6bner basis theory but actually going back to Gordan [10]: for every ideal I in a 

polynomial ring there is a basis ~ modulo I ,  consisting of monomials, such that every 

divisor of  a monomial in ~ is also in ~ .  For I E H n it is clear that such a basis must 

be ~ for some partition/~ of n. 

Since every k[x, y]/! has one of the sets ~u as a basis, we see that for N/> n - 1, 

the set of  MN of all monomials of  degree at most N spans k[x, y]/I, and thus I 
determines an element of  the Grassmann variety G"(kMN) of n-dimensional quotients of  

the linear span Of MN. For N sufficiently large (in fact, for N>>.n [11]) Grothendieck's 
construction shows that the resulting map 

H n "-+ G n ( k m N )  (2.5) 

is injective, its image is locally closed, and the induced reduced subscheme structure 
is independent of  N. This defines the structure of  H"  as a scheme. 

Now we see immediately that the sets Uu are the preimages under the embedding 
(2.5) of  standard affines on Gn(kmN ) and that the standard coordinates on these affines 

reduce to the functions Chr~,. The image of U u is closed in the corresponding standard 
affine on Gn(kMu), so the functions ChrSk generate (9~. [] 

For each I E H" ,  the scheme S = Spec(k[x, y]/I) has a finite number of  points. I f  

we assign each point p E S a multiplicity mp equal to the length of the local ring 

(gp,S = (k[x, y]/I)p then these multiplicities sum to n. In this way we associate with I 
an n-element multiset ~(I)  q A z. 

The n-element multisets contained in A 2 form an affme variety Syrnn(A 2 ). TO make 

this precise, let 

(A2) n = A 2 × A 2 x . . .  x A 2 --- Spec k[xl,yl . . . . .  xn,y,] (2.6) 

be the variety of  ordered n-tuples of points in A 2. The symmetric group Sn acts on (A 2 )n 

by permuting the factors. Note that the corresponding action on k[xl ,yl , . . . ,x~,  Yn] is 
the diagonal one given by (1.12). Identifying each multiset with an unordered n-tuple 

5 In general U~, is not an affme cell --  but compare Corollary 2.8. 

Kyla Pohl
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of points in A 2, we have 

Sym"(A 2) = (A2)n/S. = Speck[X, y]S., 

where k[X, y]So denotes the ring of  invariants for the diagonal action. 

The map n : H"  ~ Symn(A 2) defined above is called the Chow morphism. 

(2.7) 

Proposition 2.2. The Chow morphism rr : H n ~ Symn(A 2) is a projective morphism. 

Proof. This is well-known but it may be instructive to review the proof. 
For I C U~, let Mx and My be the matrices of  multiplication by x and y in k[x, y]/I, 

taken with respect to the basis Mu. The entries of Mx and My are regular functions of 
I, in fact they are instances of the functions ch~Sk. 

The ring k[x, y]/I is the direct product of its local rings (k[x, y]/I)p, and the only 
eigenvalues of  Mx and My on the local ring at p -- (~, () are ¢ and (, respectively. 
Since Mx and My commute it follows that tr(M~My) = ~-'~pmp~r( s. By the definition 

of n, this is equal to p~,~(~z(1)), where 

= Z  r pr~ xi ~ ~ k[x, r]S. (2.8) 
i 

is a polarized power sum. By a theorem of Weyl [20], the polarized power sums 
generate k[X, y]S,. Since we have shown that rc*pr,~ is regular on H ~, zc is a morphism. 

The morphism n is projective because it extends to a morphism ff:Hilb"(P 2) --, 
Symn(P 2) of projective varieties, under which the preimage of Sym"(A 2) is H ". [] 

The two-dimensional toms group 

T 2 -- {(t,q) : t ,q E k*} (2.9) 

acts algebraically on A 2 by ( t ,q ) . (¢ , ( )  -- (t~,q(), or equivalently on k[x,y] 
by ( t ,q) .x  = tx, ( t , q ) . y  = qy. There is an induced action on H n which, since 
(2.4) must remain invariant, is given by ( t ,q ) . c~  = tr-hq~-%~h~. One must take 
care in computing (t, q ) .  I for I E H n to remember that this means the pullback of 

I via the homomorphism (t,q):k[x,y] --* k[x,y], given by (t ,q).  I = {p( t - lx ,  q - l y )  : 
p(x, y)  E I}. 

More generally, as long as we keep our constructions homogeneous, the toms action 
is implicit in the x- and y-degrees: f is doubly homogeneous of bi-degree (h, k) if 
and only if f is a toms eigenfunction with (t, q).  f = thqkf. With this understanding, 
we need never write down the toms action in equations. 

An ideal 1 E H n is a T 2 fixed point if and only if I is doubly homogeneous, that 
is to say, if and only if I is spanned by monomials. Such an ideal I must clearly be 
of the form 

[l~ -~ ( x h y  k : (h, k) ~ ~) (2.10) 

Kyla Pohl
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for some partition/~ of n. Note that the subscheme of  A 2 defined by such an ideal I~ 
is concentrated at the origin, the sole T 2 fixed point of  A 2. 

Lemma 2.3. Every ideal I E H" has a torus fixed point in the closure of  its orbit. 
More precisely, let < denote the lexicographic ordering of  monomials 1 < x < 

x: < . . .  < y < xy < xey < .. . ,  and for p E k[x,y] let 2(p) denote the greatest 

monomial appearing with non-zero coefficient in p. Let in(I)  = k- {2(p) : p E I} be 

the initial ideal of  I. Then 

lim lira ( a , b ) . I  --- in(I)  = I~ (2.11) 
a----~O b--~O 

for some partition # of  n. 

Proof. Note that x2(p)  = 2(xp) and y2(p)  = 2(yp) ,  which shows that in(l) is an 

ideal. Let ~ be the set of  monomials not belonging to in(l). These monomials are 

linearly independent modulo I,  else there would be a non-zero polynomial p E k ~ N I ,  

which would force 2(p)  E ~ Ni n ( I ) .  The monomials in ~ also span modulo I.  Indeed, 
every monomial either belongs to ~ or is 2(p)  for some p E I, so in either case is 

2(p)  for some p E k ~ + l .  This readily implies by induction on < that every monomial 

belongs to k ~  + I.  
Having observed that ~ is a basis modulo I we see that in particular ~ has n 

elements, so the monomial ideal in(I)  is I~ for some partition /~ of  n, and M -- M, 

for the same #. As a consequence we can also conclude that I E U~. 
Since i n ( / ) - - I ~ ,  the leading term of 

xr y s - ~ c~h~(I)xhy k E I (2.12) 
(h, ~)~ 

for (r,s) ~ # must be x r y  s, which implies that c~  = 0 unless x r y  > xhy k. In other 

rs = 0 unless either (i) k < s or (ii) k = s, h < r. For h, k, r, s satisfying w o r d s ,  Chk 

these conditions we have 

r - h - s - k  rs lim l i m ( a , b ) c ~ = l i m  lira a o Chk=0,  
a--~O b----~O a--*O b---*O 

so lima_0 limb~0(a, b) .  1 -- I~, as claimed. [] 

(2.13) 

Finally, we have the following remarkable facts, peculiar to the two-dimensional 
setting. 

Proposition 2.4. The punctual Hilbert scheme H n of A 2 is smooth and irreducible, 
of  dimension 2n. 

Proof. Again, this is well-known but we give the proof since we want to have a 

completely explicit local system of regular parameters at I~. 
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It suffices to verify smoothness locally near each T 2 fixed point I s. The reason for 
this is that the singular locus is closed and T 2 stable, hence by Lemma 2.3 it must 
either be empty or contain some I s. 

Under the Chow morphism n, it is easy to see that the image n(Us) is dense in 
Symn(A2). Therefore U s has dimension at least 2n, The maximal ideal m of /u  in ¢u, 
is given by 

m = (chr~ • (h, k)  E #, (r,s) ~_ #). (2.14) 

rs 1, so we rs _~_ 0 identically for (h, k)  # (r,s), and Crs = (For (r,s) E #, we have Chk 
rs rs from the ideal.) We shall now find 2n of  the coordinate functions chk omit these Chk 

which span the cotangent space m/m 2. This will show that dim m/m 2 = 2n, so H n is 
smooth at I s. 

We single out two special coordinate functions c~,~, for each square (h, k) E #. Let 
( f , k )  be the top square in column k and let (h,9) be the last square in row h. This 
given, let 

h,9+l _ f  +l ,k  (2.15) 
Uhk ~ C f ,  k , dhk  = Ch, g • 

These will be our spanning parameters for m/m 2. 
Multiplying (2.4) through by x, then expanding each term on the right by (2.4) 

again and comparing coefficients yields the identity 

r+l.~ (2.16) Ch k ~ rs h~+l,k I 
ChPk~Chk 

(h'~')CS 

for all (h, k) E # and all (r,s). Proceeding similarly with y in place o f x  yields 

Cr,s + 1 hi, Z r~ h',k'+t (2.17) = Ch~k~Chk • 

(h', k' )EP 

Modulo m 2, the terms crh~,k, Ch'k+l~' on the fight-hand side of  (2.16) reduce to zero 

for (h' + 1,k') ~ # and for (h' + 1,k') E #, (h' + 1,k') # (h, k). The remaining term 
is c~,~ lg, or zero if h = 0. Corresponding reductions apply to the right-hand side of 
(2.17). Thus in m / m  e we have 

cr+l,s = Crs 
hk h-l~, or 0 if h = O; (2.18) 

cr,~+l : Crs hk h~-l, or 0 if k = O. 

It is convenient to depict each c~ by an arrow from (r,s) to (h, k), as shown below: 

s) 

(2.19) 
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Eqs. (2.18) say that we may move these arrows horizontally or vertically without 
changing their values modulo m 2, provided we keep the head inside # and the tail 

outside. More generally, as long as we keep the tail in the first quadrant and outside #, 
we may even move the head across the x-or y-axis. When this is possible, the value 

of the arrow is zero. 

It is easy to see that a strictly southwest-pointing arrow can always be moved south- 

east until its head crosses the x-axis, so its value is zero. Moving a weakly northwest- 

pointing arrow as far northwest as it will go either carries its head across the y-axis or 

leaves it with its head at the top of a column in # and its tail just outside the end of 

a row. At this point the arrow can neither move north nor west, and it represents one 

of the parameters uhk. In similar fashion every weakly southeast-pointing arrow either 
can have its head moved across the x-axis, or else it becomes one of the parameters 

dhk. Since there are no northeast-pointing arrows to begin with, this completes the 

demonstration that the Uhk and dhk span m / m  2. 
Finally, Lemma 2.3 shows that H"  is connected and since it is smooth it is therefore 

irreducible. [] 

From the proof we also have 

Coronary 2.5. The parameters Uhk and dhk defined by (2.15) form a local system o f  
regular parameters at I~. 

Remark. The set 

G, = {I E H" : in(I) = I~} (2.20) 

is closed in Uu and defined by the vanishing of all c~] for x r y  s < xhy k, as is clear from 

the proof of  Lemma 2.3. Locally at I u this reduces to the vanishing of the parameters 

dh, k for (h, k) not the last square in its row. This leaves n + l(/~) parameters free, 
where l(#) is the number of  rows, so dim Cu = n + l(#). In fact Cu is an affine cell 

C~ -~ A n+t(~). Ellingsrud and Str6mme [6] used this cell decomposition to determine 

the cohomology of the Hilbert scheme over C as a complex manifold. 

Up to here we have mainly reviewed known properties of the Hilbert scheme. At 
this point we sally into new territory. 

First, we construct H n as a blow-up of Symn(A2), permitting us to express the coor- 

dinate functions Chr~ in a useful way as ratios of  Sn-altemating polynomials, analogous 
to Schur functions. This blow-up also provides a natural line bundle (.9(1), very ample 
for H n as a scheme projective over Syrup(A2). 

Next, we investigate the universal scheme H~ c_ H"  × A 2, and the zero fiber 
H~ = n-l(Q). Both of these schemes are Cohen-Macaulay, and H~ is the isomor- 

phic image of a complete intersection in H~. Using this we give an explicit resolution 
of the structure sheaf of  H~. 
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Let A = { f  E k[X,Y] : a f  = e (a )Va  E S,} be the space of  S,-altemating poly- 

nomials in k[X, Y] = k[xl ,yl , . . . ,xn,  y,]. For each n-element subset D = {(Pl ,q l )  . . . . .  
(P,,qn)} of  N x N,  the determinant 

Ao(X, Y) = det [rPJ qJl" t - i  Yi  Ji, j= l  (2.21) 

is well-defined up to a change of  sign and belongs to A. Moreover, if ~ denotes the 
collection of all n-element subsets D C_ N x N, then 

{AD :D E 9 }  

is a basis of A. When D is the diagram of a partition # we set 

A l, = AD. 

(2.22) 

(2.23) 

Now let A a be the space spanned by all products f l f 2 " ' "  fd ,  with the f i  in A, and 
for d = 0 take A ° = k[X, y]S,. Then for all d and e, AaA e C_ A a+e, so there is a graded 
k[X, Y]S,-algebra 

R = A° GA 1 @ A 2 0 . . . .  (2.24) 

Proposition 2.6. The scheme ProjR is isomorphic to H ~, in such a way that 
the natural morphism 0 : Proj R --+ Spec A ° = Symn(A 2) coincides with the Chow 
morphism re. 

Proof. Let Y be the open subset of Symn(A 2) consisting of multisets S C_A 2 with n 

distinct elements. For each such S, there is a unique ideal I E H n with /z(I) = S, 
namely, the defining ideal of S as a reduced subscheme of  A 2. Thus r~ maps Y1 = 
lr- l (Y) _c H n bijectively onto Y. 

Suppose I E UunY1, with S = 1r(1) = {(xl ,yl)  . . . . .  (Xn, y , )} .  The monomials xhy k E 
~u must describe linearly independent functions on S, so A~(xl,yl . . . .  ,Xn, y , )  ~ O. 
Although Au(xl,Yl . . . . .  x , , y , )  depends on the ordering chosen for the elements of S, 

* 2 (AD/A~)(xl,yl . . . . .  xn, yn) does not, for any D E 9 ,  and ~*(Ao/A~) = 7r (AnA~/A~) 
is a regular function on U u A YI. 

Setting #--- {(hl,kl ) . . . . .  (h,, k,)}, the coefficients crh~(I) satisfy 

Chlkl 
C rS 

F hj kjln h2k2 
]Xi Yi  I " • = 
k ..li,j=l 

/xTy~ ) 
x~y~. . 

kx~ny s 

(2.25) 

Given a diagram D = {(Pi, qi)} e 9 ,  combining Eqs. (2.25) for (r,s) = (p i ,  qi)  into 
a single matrix equation yields 

• rcpkq, l n = [ Pk qk]n (2.26) 
Y i , j=l [. hjky Jj ,  k=l [Xi : i  Ai, k=l"  
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Taking determinants of this gives the identity 

7~* AD ~CP, qk] n = det , (2.27) [ hjkj Jj, k=l 

on U, N Yt, showing that 7r*(AD/A~) extends to a regular function f o  on all of U~,. 
For every two diagrams D1,D2 E ~ ,  the identity 

* * 2 rC AD, AD2 = fD, fD27~ AI, (2.28) 

holds on U~ n Y1 and therefore, since Y1 is dense, on all of U,. This shows that 7z*A 2 

is locally the principal ideal (A~) in Cu,. 
Now ProjR ~ ProjR (2) = Proj(A ° ®A 2 @A 4 • . .-)  is the same as the blow-up of 

Symn(A 2) along the subscheme defined by the ideal A 2 c_ k[X, y]So. From the universal 
property of blowing up it follows that there is a unique morphism ~ : H" ~ Proj R 
such that 0 0 7 = n. This morphism is surjective, since Proj R is irreducible (R is an 
integral domain) and birational to Sym"(A2), while H" is projective over Sym"(A2). 
To show it is an isomorphism, it remains only to prove that ~ is an embedding, i.e., 
that the natural sheaf homomorphism ~*~ProjR ---+ CH" is surjective. 

Solving Eqs. (2.25) by Cramer's rule gives 

A~ 
c~Sk(I) = - ' ( S )  (2.29) 

A~ 

with D = # \ (h, k) U (r,s). Thus on U. n Y1, chr~ = n*(AD/Au) = ~t*O*(AD/Au). Since 
the chr~ generate (9u~, it follows that ~ restricted to the closure of Y1 is an embedding. 
But H" is irreducible, so I11 is dense. [] 

Remark. (1) It seems quite likely that A 2 is the ideal of the complement yc of Y in 
Symn(A2), that is, of the locus where two or more points of the multiset coincide. It 
is easy to see that the radical x/A 2 is the ideal of yc, but we have not managed to 
prove that A 2 is a radical ideal. 

(2) In general, Hilbn(A m) is not irreducible. However, if Y1 denotes the set of 
ideals I E Hilb~(A m) corresponding to reduced subschemes of A m with n points, 
then the closure of YI is an irreducible component of Hilb~(Am). Proposition 2.6 ap- 
plies to this principal component of the Hilbert scheme, with R constructed from 
k[X(1),X (2) . . . .  ,X  (m)] in place of k[X, Y]. We suspect that the principal component of 
the Hilbert scheme should enjoy better geometric properties than the Hilbert scheme 
itself. For example, we have verified using Macaulay [3] that Hilba(A3), which is 
equal to its principal component, has Gorenstein singularities. By contrast, Hilb~(A m) 
in general is not even equidimensional. 

Proposition 2.6 provides us with the following useful representation of the coordinate 
ring of U~. 
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Corollary 2.7. We have 

(gv~ ~- k [ A-~u " D E ~ ] . (2.30) 

It may be instructive to work everything out in the case of  U(ln),  the set o f  ideals 

modulo which {1,x . . . .  ,x "-1 } is a basis. Such an ideal I is generated by two polyno- 
mials 

X n __ el  x n - I  qt_ e2 x n - 2  . . . .  4- e n - l X  ~ en, 

y - (ao + alx + . . .  + an_lXn--l). (2.31) 

When I E UO, ) is the ideal o f  a reduced subscheme S = { (x l , y l )  . . . . .  (Xn, yn)}, the 

x-coordinates xi are all distinct, and the first polynomial above, which must vanish 
when x = xi, becomes 

H ( x  - xi), (2.32) 
i 

so the coefficients er are the elementary symmetric functions er(X). The second poly- 

nomial in (2.31) is y -  q~a(x), where ~ba(x) is a Langrange interpolation polynomial 
- -  the unique polynomial o f  degree n - 1 satisfying ~pa(Xi) = Yi for i = 1 . . . . .  n. 

For p = (In),  du is the Vandermonde determinant A(X) = I-[i<j(xi- xj). Given 

any Ao C A, we may substitute into it yi = C~a(Xi) for each i to obtain a polynomial 

9(Xl . . . . .  xn, ao . . . . .  an-1 ) which is alternating in the variables xi and is therefore of  the 

form A(X) f (e l  . . . . .  en,ao . . . . .  an- l ) .  Thus the isomorphism (2.30) is given explicitly 
by 

Ao 
A(l,) (Xl, y~ . . . . .  xn, Yn) ---- f ( e l  . . . . .  en, a 0 . . . . .  a n - 1  ). (2.33) 

In particular, this formula relates the local parameters uhk and d h k  given by 

Corollary 2.5 to the parameters ar and er. We may summarize as follows. 

Corollary 2.8. The open affine set UO, ) is an affine cell Spec k[ao . . . . .  an-l,el . . . .  ,e,]. 
The isomorphism of  Corollary 2.7 carries er to the rth elementary symmetric function 
er(xl . . . . .  xn) and ao through an-I to the coefficients of  the Lagrange interpolation 

n-l for all i. The local parameters polynomial defined by Yi = ao + alxi + . . .  + an-iX i 
of  Corollary 2.5 become UrO = ~ = o a n - l - j h r - j  and dr0 = (--1)n-r+len-~, where 
hr-j is the complete homogeneous symmetric function of  degree r - j ,  reoarded as a 
polynomial in the elementary symmetric functions ei. 

Definition. The universal scheme H~_ is the unique subscheme o f  H n × A 2 such that 
the projection 

r/: H~_ ~ H ~ (2.34) 

is flat, and for each I E H n the scheme-theoretic fiber ~/ - l ( I )  is the subscheme 
Spec(k[x, y]/I) of  A 2. 
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The universal scheme exists, and derives its name from the universal property of 
H ", namely, given any fiat family F of length n subschemes of A 2 parametrized by 
a scheme T, there is a unique morphism T ~ H" such that F = T ×t/o H~_. We 
summarize some elementary properties of H_~ as follows. 

Proposition 2.9. The scheme H~ is the reduced subscheme 

H~_ = {(L p)  E H n × .4 2 : p C re(I)}. (2.35) 

It is Cohen-Macaulay, flat and finite over H ~. Its ideal sheaf as a subscheme of  
H n × A 2 is generated locally on U~ × A 2 by the equations 

xr y s -  ~ C~:xhy k, (2.36) 

where x, y are the coordinate functions on A 2 and Chk are those on 

Proof. The projection r/: H~_ ~ H ~ is flat and finite by definition, and since H ~ is 
smooth, this implies that H~_ is Cohen-Macaulay. 

The identity (2.35) clearly holds set-theoretically. As before, let Y1 C_ H n be the set 
of ideals corresponding to reduced subschemes. Then H~_ is reduced on the open set 
~/-l(Yl ). Since ~/is flat, Yl is dense, and H ~ is reduced, it follows that H~_ is reduced. 

Let for the moment X denote the subscheme defined locally on U~, x A 2 by Eqs. 
(2.36). These equations when specialized to chr~ = C~Sk(I) generate I, so the scheme- 
theoretic fiber of X over I is Spec(k[x, y]/I). In particular, X is well-defined where 
different sets U u overlap and flat over H n. Hence X is equal to H~_. [] 

Remark. In general, the universal scheme Hilb~_(A m) need not be reduced, a 
phenomenon related to the reducibility of Hilbn(Am). 

Definition. The zero fiber H~ is the reduced subscheme 7t- 1 (0 )  C H n, where 0 denotes 
the multiset {n. (0,0)}. 

The projection ~/: H~_ ~ H n maps the fiber scheme r/-l(H~) bijectively onto H~, 
but not isomorphically, since ~/-l(H~) is not reduced (its fiber over I is Spec k[x, y]/1). 
The corresponding reduced subscheme r/-l(H~)red, however, does map isomorphically 
onto H~'. Much more is true, as the following proposition shows. 

Proposition 2.10. The projection rl maps the reduced fiber scheme r/-l(H~) red iso- 
morphically onto H~. Moreover, r/-l(H~) red is a complete intersection in H~_, defined 
locally on 11-1 (U~) by the ideal 

J = (x,y, pr.~ : (r,s) E # \ (0,0)), (2.37) 
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where Pr,~ C k[X, y]S, is the polarized power sum defined in (2.8). In particular H~ 
is Cohen-Macaulay. Viewed as the fiber scheme ~z - l  (0), 113 is scheme-theoretically 
reduced and irreducible. 

Proof. By definition, for every I E H~, the subscheme Spec k[x, y]/I C_ A 2 is concen- 
trated at the origin, so q-l(H~)red is contained in the reduced subscheme H" x {0} 
of H ~ x A 2. As a reduced subscheme of H" × {0}, it is obviously equal to H~ x {0} 
and thus projects isomorphically onto H~. 

The irreducibility of H~ is proved in [4], together with the fact that dim H~ -- n - 1. 
Since q is finite, the dimension of H~_ is that of/_/n, namely 2n. The ideal J is given 
by n + 1 generators, so if we show it locally defines q-l(H~)red, even if only set- 
theoretically, then it must be a complete intersection ideal. 

Since J contains x and y, the subscheme V ( J )  that it defines is contained in 
H ~ x {0}, and under the trivial isomorphism H" × {0} TM H ~, V ( J )  corresponds to 
the subscheme of H" defined locally on U~ by (pr~ : (r,s) E I~ \ (0,0)). Likewise, 
letting J~ denote the ideal of the same form (2.37) as J but without the restriction 
(r, s) E #, V ( J  t) projects isomorphically onto the subscheme of H" defined by the ideal 
(pr.~ : (r,s) # (0,0)). Weyl's theorem, mentioned earlier in the proof of Proposition 
2.2, implies that this latter is the ideal of 0 in k[X, y]S. and thus also of the scheme- 
theoretic fiber 7~--1(0) in H n. 

Suppose we can show that J -- J '  on ~/-I(u~). Then V ( J )  = V ( J ' )  projects 
isomorphically onto re-l(0), which as pointed out above makes V ( J )  a complete inter- 
section. Being isomorphic to a local complete intersection in H~_, n- l (0)  
must then be Cohen-Macaulay. Now in the explicit coordinates on U(1,) given by 
Corollary 2.8, n- l (0)  is easily seen to be defined by the ideal (a0,el . . . . .  e,), so 
it is genetically reduced, hence reduced, hence equal to H~, establishing everything 
asserted. 

What remains to prove is that the additional generators p~.~, (r,s) ([ # of J t  are 
redundant. For this, note that when (xi, yi ) E it(I) we must have x[ Jii = ~(h, k)~u ChrSk(I) 

xhy~/. Summing on i from 1 to n we find that 

Z rs (2.38) Pr,~ = ChkPh, k, 
(h, k)Ep 

identically on H n and therefore also on H n × A 2. This equation is not quite enough 
to eliminate Pr,~, since it contains a term c00rs PO,O which is not obviously in the given 
ideal. But we also have on H~_ the identity 

xryS= Z crh~xhyk" (2.39) 
(h, k)~t~ 

The left-hand side and all terms except (h, k) = (0, 0) on the tight belong to the ideal 
(x, y), so the remaining term Co% belongs to (x, y) as well, completing the proof. [] 
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Corollary 2.11. The structure sheaf  (gHg, regarded as an (gn, module, has a local T 2 

equivariant minimal free resolution at I~ 

O ---~ F,+I ~ . . .  -+ FI --~ Fo ---* (9t4g ---~ 0 (2.40) 

with Fi = B ® Ai (B  ' @ (9, • (gq), where B is a free module with basis ~., B' is the 

same with the basis element x°y  ° omitted, and (gt, (gq denote Ca° with trivial torus 

action multiplied by the 1-dimensional characters t and q, respectively. 

Proof. By Proposition 2.9, tl.(gH~ -~ B locally. The free module on the local generators 
of the ideal in (2.37) is clearly isomorphic to BtG(.gtG (gq. Since the ideal is a complete 
intersection, the Koszul resolution is a minimal free resolution, whose terms are the 

given Fi. [] 

Remark. The free resolution in (2.40) can easily be made global. We already have 
the 'tautological' bundle B = tl.(gtt+ defined globally, and the finite morphism t/gives 
us a trace map B ~ (9 that splits the natural map (9 ~ B (recall we are assuming 
the characteristic of k does not divide n). The complementary summand B/(9 is the 
required B', as the trace map sends the section of B represented by xhy k to Ph, k. 

To conclude, we study the line bundle (9( 1 ) associated to our explicit representation 
of H"  as a blow-up. 

Proposition 2.12. Let  (9(1) be the ample line bundle arising f rom the projective em- 
bedding H" = Proj R o f  H"  as a variety projective over Sym~(A 2) given by Propo- 

sition 2.6. Let  B = tl.( (gtl~ ) be the tautological bundle. Then (9(1) is isomorphic to 
the highest exterior p o w e r / ~  B. 

Proof. For each g, the element A~ of A t defines a global section s~ of (9(1), which 
generates (9(1) locally on U~ = Spec k[AD/A u : D E 9] .  Where different open affmes 
U~, U~. overlap, these sections are of course related by 

s~, = ( A,,/A~)su; (2.41) 

note that both (Av/Au) and its inverse are regular on Uu N Uv. 
We need to define corresponding sections t u of A" B. To this end, let us fix the 

squares in the diagram of # to be (hi, kl) . . . . .  (h,, k,) in some definite order, and 
agree to fix the sign of A~, by taking the columns of the determinant in this order. On 
U,, the monomials xhi)/' represent a basis of sections of B, and so 

t~ = xh~ y k' A xh2 y h A . . .  A xh" y k" (2.42) 

represents a generating section of A n B. Note that an alternative choice of ordering 
would produce identical sign changes in both t~ and s~; thus there is a well-defined 
local isomorphism fl~: (9(1) -+ A n B sending s~ to tu on U~. 



218 M. HaimanlDiscrete Mathematics 193 (1998) 201-224 

We must now prove that the local isomorphisms flu are compatible, which is to say, 
that 

t~ = (A~/Au)t ~ (2.43) 

on U u N U~. Now tv/t~ is computed on U u as follows. For each (ri,si) E v, apply the 
identity 

xriySi: Z Chjkj hyy.~,k, 

valid on B, to each factor of the exterior product 

tv = x~y ~' Axr~y ~2 A " -  Axr"y" 

and expand. This gives 

risi tv/t. = det chjkj i,j=l' 

which we have seen in (2.27) is equal to Av/A u. 

(2.44) 

(2.45) 

(2.46) 

[] 

Every Sn-alternating polynomial A defines a global section of ~(1), and this cor- 
respondence is actually an isomorphism of A with H ° ( H  ~, d~(1)). The reason for this 
is that H°(H~,O(1)) is the degree 1 part of the integral closure of the ring R = 
A°OA 1 0 . . . .  It seems very probable that R is already integrally closed, but at any rate 
the ring R t = A ° OA 10A ° OA 1 0 . . .  is isomorphic to the ring of invariants k[X, Y,s] s", 
where the S, action is extended from k[X, Y] by letting a(s) = e(a)s for a E S,. Thus 
R' is integrally closed, and the two rings R and R I have the same degree 1 part. 

If the polynomial A belongs to JA, where 

J = (Ph, k : (h, k) ¢ (0, 0)) (2.47) 

is the ideal of _0 in k[X,Y] s", then the corresponding global section of ~(1) must 
vanish upon restriction to the zero fiber H~. Thus there is a well-defined map A/JA 
H°(H~,(_9(1)), which we expect, but do not prove, to be an isomorphism. Similarly 
there are maps Am/JA m ~ H°(H~, (9(m)) which definitely are isomorphisms for large 
m. We summarize this as follows. 

Proposition 2.13. Let 9.[, m be respectively the ideal generated by all Sn-alternating 
polynomials, and the maximal ideal (xl ,yl  . . . . .  Xn, Yn) in k[X, Y]. Then there are nat- 
ural maps 

~[m/llt~m ~ t t°(  H~, d)(m ) ), (2.48) 

and they are isomorphisms for all sufficiently large m. O f  course we also have 

Hi(H~,e)(m)) = 0 for all i > 0, (2.49) 

for  all sufficiently large m. 
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Proof. The last part is Serre's vanishing theorem, because d~(1) is ample for the pro- 
jective variety H~. 

Since we have shown that H~, viewed as 1r-l(0), is scheme-theoretically reduced, 
we have H~ = Proj(R/JR), where J is the ideal in (2.47). This implies that for all 
sufficiently large m we have H°( H~, d)( m ) ) ~- ( R/JR )m = Am/JA m. 

Finally, note that 9J m is obviously generated by its Sn-altemating or Sn-invariant 
elements, respectively, depending whether m is odd or even. For simplicity let us 
refer to these elements as having correct parity. One easily proves by induction on 
m that A m is the set of elements with correct parity in 9A m. It follows that the natural 
map Am/JA '~ ~ ~m/mgJm is surjective. One also proves easily that JA m is the set of 
elements with correct parity in mgd[ m, and therefore the map Am/JA m ~ ~[m/m~[m is 
also injective. [] 

Remark. Conditions (2.48) and (2.49) must hold for all m>>,O if the ring R/JR or, 
what is the same, the Rees algebra fiber 

S = k[X, Y, s92]/mk[X, Y, sgJ], (2.50) 

is a Cohen-Macaulay ring. To see this, note that H~ = Proj S implies that, apart from 
a possible embedded component at the homogeneous maximal ideal rt, Spec S is the 
affine cone over H~ in its projective embedding induced by dg(1). Therefore by the 
long exact sequence for local cohomology [14], the local cohomology modules Hi(S) 
are given by 

0 --+ H°(S) --+ S --+ {~H°(H~, (9(m))  ~ HI.(S) --+ O; (2.51) 
mCZ 

H/+I(s)-~ ~)H~(H~ ,6 (m) )  for i > 0. (2.52) 
mEZ 

The vanishing of H°(S) and HIm(S) then gives (2.48), while the vanishing of Hi(s)  
for i < n gives (2.49) for i < n -  1. 

To obtain (2.49) for i = n - 1, we must show that the local cohomology module 
H~(S) vanishes in degrees zero and above. To this end let 

h(m) = dim(gJm/m~ m) = dim (S)m ; g(m) = dim(H~(S))m (2.53) 

be the Hilbert functions of S and H~(S) respectively. Then, still assuming S is Cohen- 
Macaulay, h(m) + ( -1)n- lg(m) is given by a polynomial in m for all m E Z [19]. 
Our main theorem, Theorem 2 below, holds for all large m and so shows that this 
polynomial must be 

h ( m ) + ( - 1 ) n - l g ( m ) = C ~ m ) ( l ' l ) -  l ( (m+ 1 n " (2.54) 

Now this vanishes for m = -1 ,  and of course h(m) vanishes for m < 0, so we have 
g ( -1 )  = 0, which implies that Hm(s) must vanish in degrees -1  and above. 
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If  S is Cohen-Macaulay, then H~ must also obey the Kodaira vanishing theorem 

Hi(H~,(9(-m)) -- 0 for all i < n - 1, m > 0. (2.55) 

Conversely, conditions (2.48) and (2.49) for all m/> 0, together with (2.55), imply that 
S is Cohen-Macaulay. 

3. The Atiyah-Bott Lefschetz formula 

We are now ready to use the results of Section 2 to write down explicitly the 
Atiyah-Bott formula for the Euler characteristic of the line bundle (9(m) on the zero 
fiber of the Hilbert scheme. 

We begin with a statement of the theorem in the form we need. Here we shall 
assume that the ground field k is C, which is sufficient for our application. 

Theorem 1. Let X be a smooth d-dimensional complex projective variety on which 
the torus group T = T l acts algebraically. Assume that X possesses a T-equivariant 
ample sheaf (9(1). Assume also that the fixed point set X r is finite. For each point 
x E X r let k(x) = (gx.~/mx denote the structure sheaf of  the point x, regarded as an 
(gx module, and let C(x) = mx/m2x denote the cotangent space to X at x. 

For every T-equivariant coherent sheaf of  (gx modules E we have, as an identity 
of  rational functions of  z E T, 

d 
E ( - 1  )i trH~(X~)(z ) = ~ E~=o(-  1 )i trTor,(k(x),~)('r) 
/=0 x~Xr  d--e~c~x~(l S--~ " (3.1) 

Proof. If the sheaf E is locally free, this is the original theorem stated in [1]. By the 
long exact sequences for cohomology and Tor, each side of (3.1) is additive, in the 
sense that for an exact sequence 

0 --~ E I ~ E ~ E"  ~ 0, (3.2) 

the expression for E is the sum of the corresponding expressions for E'  and E ' .  This 
additivity reduces the theorem to the locally free case, provided that E has a finite 
T-equivariant locally free resolution. 

We can construct the desired resolution along the lines of the usual proof of the 
syzygy theorem for a smooth projective variety. For some large enough m, E ® (9(m) 
is generated by its global sections. Its space of global sections is a finite-dimensional 
representation of T (as we are assuming (9(1) T-equivariant), so it has a basis of 
T-eigensections. Each eigensection gives a T-equivariant homomorphism (P(-m) ~ E, 
and combining them we have a T-equivariant epimorphism 

(9(-m)" ~ E (3.3) 

for some r. 



M. Haiman I Discrete Mathematics 193 (1998) 201-224 221 

Now replace E by the kernel of (3.3), which is again T-equivariant, and iterate the 
construction. By the syzygy theorem for a regular local ring, the d-th kernel is itself 
locally free, and we are finished. [] 

Remark. By reduction to a finite cyclic group action, one can eliminate the need to 
assume that C(1) is T-equivariant. The same reduction and the results of Baum et 
al. [3] allow one to generalize the theorem to arbitrary characteristic, replacing the k- 
valued trace with a formal character. For locally free sheaves one can also generalize 
to singular varities, although the terms on the right-hand side then become less simple 

and explicit. 

We now come to our main theorem. 

Theorem 2. The (t,q)-Catalan numbers c~m)(t,q) defined by (1.10) are equal to 

n - I  

C(nm)(t, q) --- Z ( -  1 )i trn,(ng,e(,~))(t ' q). 
i=O 

(3.4) 

In particular, for  m >>. 0 they are polynomials in t and q with integer coefficients, and 
when (2.49) holds, c~m)(t,q) is the Hilbert polynomial o f  H°(H~, (~(m)). 

Proof. We apply the Atiyah-Bott formula to the projective variety X = Hilbn(P2), 
T = T 2 and the coherent sheaf E = (gt4g(m) = (_gttg ® (9(m), whose cohomology 
groups are Hi(H~,O(m)). We must show that the right-hand side of (3.1) amounts 
to our formula (1.10). Although X has some T fixed points outside Hilbn(A2), their 
contribution is zero, since the sheaf (gHg is zero there. So we only have to consider 
terms corresponding to the fixed points I~, of H n. 

By Corollary 2.5 the local parameters Uhk and dhk are a basis of T 2 eigenfunctions 
for the cotangent space of H n at Iu. For a square x = (h, k) in #, we see from (2.15) 
that dhk has bi-degree (1 + l (x) , -a(x)) ,  or toms character tl+t~X)q -a(x), while Uhk has 
character t-ttX)q l+a(x). These eigenvalues account for the product in the denominator 
in (1.10). 

For the numerator we use the resolution of (gHg in Corollary 2.11, noting that 

~-~(-  1 )i trTori(k(l,),61t ~ )(,~) = y~(__ 1 )k trF,(l,)(Z), (3.5) 
i i 

where Fi(I~) = Fi ® k(l~) is the fiber of Fi at I~. 
Each Fi involves the tautological bundle B as a tensor factor. The trace of (t, q) 

on B(I,)  is 

(3.6) Z thqk = Z tl'(X)qa'(x)' 
(h,k)c# xEl~ 
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since {xhy k : (h, k) G #} is a basis of B(Iu) = k[x,y]/1 u. The remaining factor in Fi 
is the ith exterior power of B' @ (.0, ~ Oq. Now it is easy to see that for any space V 
and linear endomorphism ~ we have 

Z ( -  1 )i tr^, v(~) = detv( 1 - ~). (3.7) 
i 

In our case V is the fiber of B' ~ (gt @ d?q at Iu, which has the T 2 eigenvalues t, q, 
and {thq k : (h, k) E #, (h, k) # (0, 0)}. Thus the above determinant becomes 

(1 - t)(1 - q) E (1 - tt'(X)qa'(x)). (3.8) 
xeu\(o,o) 

Finally, we are tensoring Ottg by (9(m), which multiplies the term for the fixed point 
I u by the torus character of (9(m)® k(I~). Since dg(1) is the nth exterior power of B, 
the character of its fiber at I u is 

E tt'(X)qa'(x) = tn(u)qn(U'), (3.9) 
xE/J 

and that of its ruth tensor power (.0(m) is 

tmn(u ) q mn(u' ). (3.10) 

Multiplying together (3.6), (3.8) and (3.10) we obtain the numerator in (1.10), and 
we are finished. 

Or almost finished, since what this really shows is only that c~m)(t,q) is a 
Laurent polynomial in t and q. However, by expanding (1.10) as a series in t with 
coefficients functions of q, we can easily see that this Laurent polynomial in fact 
contains no negative powers of t, and by symmetry, neither does it contain negative 
powers of q. [] 

We close with a few comments concerning the cohomology vanishing hypothesis 
(2.49). We can prove, by explicit computation on e(1 n) U U(n), using Corollary 2.8, that 
the canonical sheaf of H n is isomorphic to its structure sheaf •. Knowing this, we 
can apply the criterion of Mehta-Ramanathan [18] to prove that H n has a Frobenius 
splitting in prime characteristic. This implies the vanishing of higher cohomology for 
all the sheaves d~(m), m > 0, on H n, both in positive characteristics and characteristic 
zero. It is also known that the higher cohomology of On, vanishes. 

If  the zero fiber H~ were also Frobenius split, we would immediately have the 
result we desire. Unfortunately, the Mehta-Ramanathan criterion (adapted to singular 
Cohen-Macaulay varieties using duality theory) can be used in reverse to prove that 
for all but a few small values of n, H~ does not have a Frobenius splitting in any 
characteristic. 

An alternative approach would be to prove higher cohomology vanishing on H n of 
the vector bundles Cg(m)®B® A~(B) for all m and k, and so deduce the vanishing for 
~ttg(m) from the global form of the resolution in Corollary 2.11. We have suceeded 
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in this for m = 0, showing that the higher cohomology of t~/tg vanishes. This yields 

the identity C(~°)(t,q)= 1, which was also proved in [9] by elementary means. 
Recalling that t~(1 ) is an exterior power of  B, and that exterior powers are summands 

of  tensor powers, all the needed cohomology vanishing would follow from 

Conjecture 3.1. Hi(Hn ,B  ®k) -- 0 for all i > 0 and all k, where B ®k denotes the kth 

tensor power B ® B ® • • • ® B of the tautological bundle. 

This conjecture would imply higher cohomology vanishing for the tensor powers of  

B on H~, and hence for any Schur functor [17] applied to B or its summand B/C, since 

the Schur functors are summands of the tensor powers. This leads to the following vast 

generalization of our (t, q)-Catalan formula. For any symmetric function f ( z t , . . .  ,zn-i  ), 
let f [ B  °] denote f evaluated with zi = th'q k', where {(hi, ki) : i = 1 . . . . .  n - 1} is the 
set of  squares in the diagram of #, excepting (0,0). Then on the validity of  Conjecture 
3.1 the expression 

c(nf)(t,q) : 

f [ B O u ] ( l _ t ) ( l _ q )  1 - , , '(X)qa'(x)))(y~x~t, '(X)q,'(x,) 

Z 
I~l=n Hx~u  (1 - tl+t(X)q-a(x))(l _ t-t(X)ql+a(x)) 

(3.11) 

must be a polynomial with positive integer coefficients whenever f is a Schur function 

or a non-negative linear combination of Schur functions. Our C~")(t,q) is the special 
case f = end_l, where en_l is the elementary symmetric function of  degree n - 1. The 

expression in (3.11 ) can of course be readily evaluated for reasonable values of  n with 

the aid of  a computer, and such experiments invariably confirm its positivity. For this 
reason it seems very likely that Conjecture 3.1 holds true. 
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