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Motivation

Definition (Stanley)

A plane partition is an array π = (πi ,j)i ,j≥1 of nonnegative integers
such that π has finite support (i.e. finitely many nonzero entries)
and is weakly decreasing in the rows and columns.

Example

3 2 2

1 1
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Motivation

Definition

The sum of all of the entries in a plane partition π is the size of π.
We denote this |π|.

Theorem (MacMahon)

The number of plane partitions with size n is the coefficient of qn

in

M(q) =
∏
i≥1

(
1

1 − qi

)i

.
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Motivation

Definition

Define
Q(π) =

∑
(i ,j ,k)∈π

r i s j tk

Q(π) =
∑

(i ,j ,k)∈π

r−i s−j t−k .

Example

3 2 2

1 1

Given the plane partition π as
before,

Q = 1 + r + r2 + s + rs + t + rt + r2t

Q = 1 + r−1 + r−2 + s−1 + r−1s−1 + t−1 + r−1t−1 + r−2t−1.
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Motivation

Definition

From Q and Q define

F = Q − Q

rst
+ QQ

(1 − r)(1 − s)(1 − t)

rst
=

∑
i ,j ,k

cijk r
i s j tk .

Definition

The equivariant vertex measure is obtained by “swapping the roles
of addition and multiplication” in F :

w(π) =
∏
i ,j ,k

(iu + jv + kw)−cijk .

We use the variables u, v , and w instead of r , s, and t post-swap.

Kyla Pohl Jack Combinatorics of the Equivariant Edge Measure



Motivation

Maulik, Nekrasov, Okounkov and Parharipande give a generating
function for w(π) in their 2005 paper.

Theorem (MNOP, 2005)

Z :=
∑
π

w(π)q|π| = M(q)−
(u+v)(v+w)(w+u)

uvw

Example (in lieu of proof. . . )

Consider the unique plane partition π of size 1:

w(π) = (−v − w)(−u − w)(−u − v)(−w)−1(−v)−1(−u)−1

=
(v + w)(u + w)(u + v)

uvw
.

Only the i = 1 term of M(q) yields any q1 terms:

[q1](1 − q)
(u+v)(v+w)(w+u)

uvw =
(u + v)(v + w)(w + u)

uvw
.
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Motivation

The proof of Z is geometric and one could hope for a
combinatorial proof; however, that is currently out of reach.

The subject of this talk is a warm-up problem for this: the same
problem one dimension down.
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Hook Lengths

Definition

Given a cell (i , j) (in matrix coordinates) in a Young diagram λ,
the hook length of the cell (i , j) is

h((i , j)) = 1 + (λi − j) + (λ′
j − i).

Example

The hook length of the blue box is four.
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Plancherel Measure

Theorem (Frame-Robinson-Thrall)

The number of standard Young tableaux of shape λ is

f λ =
n!∏

□∈λ h(□)

where h(□) is the hook length of □ ∈ λ.

Theorem (Young-Frobenius)

For any integer n > 0,

1 =
∑
λ⊢n

(f λ)2

n!
.
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Motivation

Combining these two theorems, we obtain a probability measure on
standard Young tableaux.

Theorem (Plancherel Measure)

We have 1 =
∑
λ⊢n

n!

(
∏

□∈λ h(□))2
.

A theorem of Kerov shows that generating large
Plancherel-random tableau yields a limit shape.

Example

This image was taken from a
paper of Okounkov.
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Jack Plancherel Measure

We can do all of this in a Jack setting as well.

Definition

The upper and lower hook lengths of a cell (i , j) in a Young
diagram λ are

h∗((i , j)) = t + t(λi − j) + (λ′
j − i)

h∗((i , j)) = 1 + t(λi − j) + (λ′
j − i)

where t is the Jack parameter.

Example

h∗((0, 0)) = 2t + 2
h∗((0, 0)) = t + 3
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Jack Plancherel Measure

Theorem (Jack Plancherel Measure)

We have 1 =
∑
λ⊢n

n!tn∏
□∈λ h

∗(□)h∗(□)
.

Just as before, if we generate a large random Young diagram from
this, we’ll get a limit shape. (Do lega) For our result, we need a
slightly different version of this.

Definition

Define

wJack(λ) =
1∏

□∈λ h
∗(□)h∗(□)

.
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Main Result

Theorem (P.-Young)

We have

wJack = −wMNOP.

Okay, but what does the right side mean?

This is the two-dimensional version of w.

Definition

Q2(λ) =
∑

(i ,j)∈λ

r i s j

Q2(λ) =
∑

(i ,j)∈λ

r i s j

F2(λ) = F2 = Q2 −
Q2

rs
+ Q2Q2

(1 − r)(1 − s)

rs
=

∑
i ,j

cij r
i s j
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Main Result

Example

Note that Q assigns a monomial to each box in a shape λ which
describes the (matrix) coordinates of the box.

1 r r2

s rs
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wMNOP

Next, we define an operation on Laurent polynomials which
switches the roles of addition and multiplication.

Definition

Let G =
∑

i ,j di ,j r
i s j be a Laurent polynomial in the variables r

and s with no constant term. Then define the swap of G to be

swap(G ) =
∏
i ,j

(iu − jv)−di,j .

Definition

We have

wMNOP(λ) = swap(F2(λ)).
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Main Result

Definition

We have

wMNOP(λ) = swap(F2(λ)).

The notion of wMNOP comes from algebraic geometry (specifically,
Hilbert schemes and Donaldson-Thomas theory) in which Jack
polynomials do frequently arise. However, this particular
connection appears to be new.
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Proof Idea

It turns out that

F2(λ) = F2 = Q2 −
Q2

rs
+ Q2Q2

(1 − r)(1 − s)

rs

is difficult to work with because of the last term. Instead, our
proof is inductive, starting with the one-box shape and adding one
box at a time.
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Proof Idea

In other words, we need to show that

wMNOP(λ)

wMNOP(µ)
:=

swap(F2(λ))

swap(F2(µ))
=
wJack(λ)

wJack(µ)
.

This allows us to avoid the messiness of F2(λ) because

swap(F2(λ))

swap(F2(µ))
= swap((F2(λ)) − F2(µ))

and F2(λ)) − F2(µ) is much cleaner.

Kyla Pohl Jack Combinatorics of the Equivariant Edge Measure



Proof Idea

In other words, we need to show that

wMNOP(λ)

wMNOP(µ)
:=

swap(F2(λ))

swap(F2(µ))
=
wJack(λ)

wJack(µ)
.

This allows us to avoid the messiness of F2(λ) because

swap(F2(λ))

swap(F2(µ))
= swap((F2(λ)) − F2(µ))

and F2(λ)) − F2(µ) is much cleaner.

Kyla Pohl Jack Combinatorics of the Equivariant Edge Measure



The Corner Polynomial

One reason that this is cleaner is because the “corner polynomial”
shows up.

Lemma (P.-Young)

The “corner polynomial” for a partition λ is

C = C (λ) := Q2(1 − r)(1 − s)

= 1 +
∑

(i ,j) inside corner of λ

r i+1s j+1 −
∑

(i ,j) outside corner of λ

r i s j

= 1 +
m∑

k=1

rρk+1sγk+1 −
m+1∑
k=1

rρk+1sγk−1+1.
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The Corner Polynomial

1 −1

−1

−1 1

1

λ

Inside every cell in λ = (3, 2) is the coefficient of its contribution
to C . Empty cells contribute nothing to C . For example, the cell

(1, 2) contributes −1 · r1s2 to C .
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Proof Idea (continued)

It turns out that a lot of cancellation occurs in wJack(λ)
wJack(µ)

, so all that
is left is a product over the boxes directly to the left and above the
added box λ/µ.

λ

C
ol((ρ

ℓ ,γ
ℓ ))

(ρℓ, γℓ)Row((ρℓ, γℓ))

· · ·

...
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Proof Idea

After these simplifications, we were able to show that

wMNOP(λ)

wMNOP(µ)
=

wJack(λ)

wJack(µ)
.

(However, it was tedious.)

Routine induction yields our theorem.

Theorem (P.-Young)

We have

wJack = −wMNOP.

In other words, the equivariant vertex measure of MNOP is the
Jack Plancherel measure (up to conventions).
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So what of the three-dimensional version of this problem?

It’s much more difficult, but we now know that w(π) is an
analogue for plane partitions of the Jack Plancherel measure.

After an initial computer experiment done by Ben, it appears that
(an analogue of) the corner polynomial shows up in the same way
and seems related to cluster algebras.

So Ben and I are working with Kayla this term to see what we can
find.
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Thank you!
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