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Average Rate of Change

I Motivating Example: Trails at Crater Lake NP
I There are many trails at Crater Lake and you are trying to

decide between three of them.

I The Cleetwood Cove Trail begins at an elevation of 7200 feet
and ends 1.2 miles later at an elevation of 7900 feet.

I The Sun Notch Trail begins at an elevation of 7400 feet and
ends 0.25 miles later at an elevation of 7500 feet.

I The Mount Scott Trail begins at an elevation of 7500 feet and
ends 2.5 miles later at an elevation of 9000 feet.

I You are feeling up for a challenge and wish to do the steepest
trail. Which trail should you hike?
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Average Rate of Change

I Intuitively, you say “how much am I changing altitude over
the distance that I’m hiking?”

I A little more formally, you might say . . .
I Cleetwood Cove has a total elevation change of

7900− 7200 = 700 feet and hence, an average elevation
change of 700

1.2 = 583.33 feet per mile.
I Sun Notch has an elevation change of 7500− 7400 = 100 feet

and hence, an average elevtion change of 100
.25 = 400 feet per

mile.
I Mount Scott has an elevation change of 9000− 7500 = 1500

feet and hence, an average elevation change of 1500
2.5 = 600 feet

per mile.

I So you should take the Mount Scott trail!
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Average Rate of Change

I How do we make this a little bit more formal?
I What if we made elevation a function of “distance from the

trailhead?”

I We have three different trails, so we need three different
functions!

I If we let d be distance from trailhead and E be elevation, then
we can name our three functions E = c(d) (Cleetwood),
E = s(d) (Sun Notch), and E = m(d) (Mount Scott).

I Now c(0) represents elevation 0 miles from the Cleetwood
Cove trailhead. So c(0) = 7200 feet.

I Elevation 1.2 miles from the trailhead is c(1.2), so
c(1.2) = 7900 feet.

I Our earlier computation to figure out “steepness” was exactly
c(1.2)−c(0)

1.2−0 = 583.33 feet per mile.



Average Rate of Change

I How do we make this a little bit more formal?
I What if we made elevation a function of “distance from the

trailhead?”
I We have three different trails, so we need three different

functions!

I If we let d be distance from trailhead and E be elevation, then
we can name our three functions E = c(d) (Cleetwood),
E = s(d) (Sun Notch), and E = m(d) (Mount Scott).

I Now c(0) represents elevation 0 miles from the Cleetwood
Cove trailhead. So c(0) = 7200 feet.

I Elevation 1.2 miles from the trailhead is c(1.2), so
c(1.2) = 7900 feet.

I Our earlier computation to figure out “steepness” was exactly
c(1.2)−c(0)

1.2−0 = 583.33 feet per mile.



Average Rate of Change

I How do we make this a little bit more formal?
I What if we made elevation a function of “distance from the

trailhead?”
I We have three different trails, so we need three different

functions!
I If we let d be distance from trailhead and E be elevation, then

we can name our three functions E = c(d) (Cleetwood),
E = s(d) (Sun Notch), and E = m(d) (Mount Scott).

I Now c(0) represents elevation 0 miles from the Cleetwood
Cove trailhead. So c(0) = 7200 feet.

I Elevation 1.2 miles from the trailhead is c(1.2), so
c(1.2) = 7900 feet.

I Our earlier computation to figure out “steepness” was exactly
c(1.2)−c(0)

1.2−0 = 583.33 feet per mile.



Average Rate of Change

I How do we make this a little bit more formal?
I What if we made elevation a function of “distance from the

trailhead?”
I We have three different trails, so we need three different

functions!
I If we let d be distance from trailhead and E be elevation, then

we can name our three functions E = c(d) (Cleetwood),
E = s(d) (Sun Notch), and E = m(d) (Mount Scott).

I Now c(0) represents elevation 0 miles from the Cleetwood
Cove trailhead. So c(0) = 7200 feet.

I Elevation 1.2 miles from the trailhead is c(1.2), so
c(1.2) = 7900 feet.

I Our earlier computation to figure out “steepness” was exactly
c(1.2)−c(0)

1.2−0 = 583.33 feet per mile.



Average Rate of Change

I How do we make this a little bit more formal?
I What if we made elevation a function of “distance from the

trailhead?”
I We have three different trails, so we need three different

functions!
I If we let d be distance from trailhead and E be elevation, then

we can name our three functions E = c(d) (Cleetwood),
E = s(d) (Sun Notch), and E = m(d) (Mount Scott).

I Now c(0) represents elevation 0 miles from the Cleetwood
Cove trailhead. So c(0) = 7200 feet.

I Elevation 1.2 miles from the trailhead is c(1.2), so
c(1.2) = 7900 feet.

I Our earlier computation to figure out “steepness” was exactly
c(1.2)−c(0)

1.2−0 = 583.33 feet per mile.



Average Rate of Change

I How do we make this a little bit more formal?
I What if we made elevation a function of “distance from the

trailhead?”
I We have three different trails, so we need three different

functions!
I If we let d be distance from trailhead and E be elevation, then

we can name our three functions E = c(d) (Cleetwood),
E = s(d) (Sun Notch), and E = m(d) (Mount Scott).

I Now c(0) represents elevation 0 miles from the Cleetwood
Cove trailhead. So c(0) = 7200 feet.

I Elevation 1.2 miles from the trailhead is c(1.2), so
c(1.2) = 7900 feet.

I Our earlier computation to figure out “steepness” was exactly
c(1.2)−c(0)

1.2−0 = 583.33 feet per mile.



Average Rate of Change

I We can do the same thing with the other two trails.

I s(0) = 7400, s(.25) = 7500
I s(.25)−s(0)

.25−0 = 400

I m(0) = 7500, m(2.5) = 9000
I m(2.5)−m(0)

2.5−0 = 600

I This process seems to tell us how steep the trail is.
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Formal Definition

I This motivates the following definition.

I Definition: The Average Rate of Change of a function
Q = f (t) on the interval [a, b] is

ARC[a,b] =
f (b)− f (a)

b − a
.

This rate of change is frequently expressed as

∆Q

∆t

where ∆Q is the total change in the output Q and ∆t is the
total change in the input t over the interval [a, b].



Example:

ARC[a,b] =
f (b)− f (a)

b − a

I Find the average rate of change of f (t) =
√
t + 1 on the

interval [3, 8].

ARC[3,8] =
f (8)− f (3)

8− 3
=

√
9−
√

4

5
=

3− 2

5
= 0.2.
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Increasing, Decreasing, and Constant Functions

I Back to our analogy of a trail, we know exactly what it means
for our elevation to be strictly increasing, decreasing, or
constant.

I We only really work with increasing in this example. The
decreasing and constant cases turn out very similarly.

I A trail is strictly increasing in elevation if, at all points on the
trail, you are going up. (i.e. there aren’t any stretches of trail
where you aren’t going up)

I We can rephrase these conditions as:
I A trail is strictly increasing in elevation if every stretch of trail

is going up.
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Increasing, Decreasing, and Constant Functions

I How do we mathematically formalize this?

I Consider our function for elevation as a function of distance
traveled from the trailhead, e = f (d).

I A “stretch of trail” corresponds to something like “.1 miles
from the trailhead to .2 miles from the trailhead,” which we
can mathematically represent as the interval [.1, .2].

I So we can turn our previous intuition into something a little
more formal...
I A trail is strictly increasing if for every interval [a, b] in the

practical domain, the elevation at b is greater than the
elevation at a.

I But we have a way of phrasing “the elevation at b” a little bit
more mathematically
I A trail is strictly increasing if for every interval [a, b] in the

practical domain, f (b) > f (a).
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Increasing Decreasing and Constant Functions

I This motivates the following, slightly more formal definition.

I Definition: A function f (t) is


strictly increasing

strictly decreasing

constant

on the

interval (c , d) as long as


f (b) > f (a)

f (b) < f (a)

f (b) = f (a)

for every pair of

values a < b in the interval [c , d ].
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Linear Functions

I We’ve got these notions of average rate of change and
increasing/decreasing/constant as ways of talking about how
functions change as their input changes. Let’s apply these
concepts to a particular class of functions.

I Definition: A linear function is any function with the property
that for any pair of points on the graph of the function, the
average rate of change between those points has the same
value, a. This value is called the slope of the function. Such a
function can always be written

f (t) = at + b

for some numbers a and b. The number b is called the
intercept.
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Linear Functions

I Sanity check: How do we know that any function of the form
f (t) = at + b has a constant average rate of change?

I Pick any interval you like, let’s say [c , d ].
I The average rate of change on that interval is

ARC[c,d ] =
f (d)− f (c)

d − c
=

(ad + b)− (ac + b)

d − c

=
ad − ac

d − c
=

a(d − c)

d − c
= a.

I Since this average rate of change does not depend on the
choice of c , d it is always constant, agreeing with what we said
earlier.
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Linear Functions

I What do slope and intercept actually mean?

I Let’s say you know that a linear function has slope a. This
tells you that if the input to the function increases by 1, then
the output increases by a.

I Example: if I’m looking at a linear function, a(l) with slope 2,
I know that a(1) will be 2 greater than a(0)

I Let’s say you know that a linear function has intercept b. This
tells you that when the input is 0, the output will be b.

I Example: if I’m looking at a linear function a(l) with intercept
-3, I know that a(0) = −3
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Linear Functions

I How do we actually solve problems about linear functions?

I Most problems that you can be asked will give you some kind
of information, then ask you to find the equation of a linear
function that satisfies that information.

I So how do you find the equation of a linear function?
I Note that finding a linear function requires two pieces of

information

1. Slope
2. Intercept



Linear Functions

I How do we find slope?

I If the average rate of change is given to you, the slope is
exactly the average rate of change.

I Example: The number of rabbits in a population was
increasing at a rate of 25 rabbits per year. What is the slope
of the function which represents the number of rabbits as a
function of year?

I Answer: 25 rabbits per year
I Example: The number of foxes in a population was decreasing

at a rate of 9 foxes per year. What is the slope of the function
which represents the number of foxes as a function of year?

I Answer: -9 foxes per year
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Linear Functions

I (Recall: For a point on a graph (t1, y1), y1 = f (t1).)

I If you are given two points on the graph of the function f , say
(t1, y1) and (t2, y2), then the slope is just the average rate of
change between those points,

y2 − y1
t2 − t1

.

I Example: Say we know that (−1, 5) and (2, 3) are points on
the graph of a linear function. The slope of that function is

3− 5

2− (−1)
=
−2

3
.



Linear Functions
I How do we find the intercept?

I In some cases, the intercept may be given to you.
I Example: Suppose you know that height is a linear function of

age. If a baby is born with a height of 15 inches, what is the
intercept of that function?

I Answer: 15 inches
I If you know the slope and you know a single point on the

graph, you can solve for the intercept.
I Example: Suppose that weight is a linear function of age with

slope 1.1 pounds per month. If a ten month old child weighs
20 pounds, what is the intercept of that function?

I Let’s do it together.
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Graphing Linear Functions

I Perhaps unsurprisingly, the graph of a linear function is a line.

I The only things that there are to know about the line are:

1. How steep is it?
2. How high (on the vertical axis) does it start?

I Again, perhaps unsurprisingly, these things correspond to:

1. Slope
2. Intercept.

I So, the question is, what do these things mean on a graph?
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Graphing Linear Functions

I Let’s do an example and see if we can figure it out.

I Graph `(t) = 2t − 1 by using this table of values and
connecting the dots.

t `(t)

-1 -3
0 -1
1 1

I Intercept is the easier thing to figure out: `(0) is the intercept,
which is exactly the height at which `(t) hits the vertical axis.

I Slope is a little trickier, but it’s the amount that you change
vertically, if you change the input by 1.

I If you know anything at all about slope, it’s that the more
positive the slope gets, the more steeply upwards the graph
points. The more negative the slope gets, the more steeply
downward the graph points.
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Collinearity

I Definition: We say that a set of points (t1, y1), (t2, y2), . . . ,
(tn, yn) is collinear if there is a vertical line or single linear
function whose graph contains all n points, i.e. if a single line
passes through all of the points.

I How do we find out if a set of points is collinear? Find the
line that goes through two of the points, then check to see if
the other points lie on that line!
I Finding all of the possible lines, then checking to see if they’re

the same is a lot of work.



Collinearity

I Example: Are the points (2, 4), (−4,−5), (0, 1) collinear?

I Example: Are the points (2, 4), (−4,−5), (0, 2) collinear?



Synthesis

I We have this average rate of change, which applies to
nonlinear functions just as well as linear functions.

I But somehow, average rate of change means linear average
rate of change.

I So using average rate of change, we should be able to tie
linear and nonlinear functions together, in some sense.

I If we start with a nonlinear
function, n(x), we can
compute the average rate of
change between a, b by
n(b)−n(a)

b−a , which is the exact
same formula as the formula
for slope between the points
(a, n(a)) and (b, n(b)).

Graph of n:
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Synthesis (continued)

I So the average rate of change between two points on the
graph of a function is exactly the slope of the line between the
two points.

I This is really important in calculus, where the entire goal is to
approximate functions by straight lines.

I Every “nice” curve has the property that, if you zoom in far
enough, it looks like a straight line. (Example: the Earth is
actually curved, even though it looks flat from our
perspective.)


