An Introduction to Jack Symmetric Functions

Kyla Pohl

November 2023

Abstract

Jack symmetric functions are a one-parameter generalization of Schur symmetric functions. In the twenty minutes provided, I'll define Jack symmetric functions and talk about a particular basis for them. Then I'll describe why hook lengths are important to evaluating the scalar product on these objects.

Defining Jack Symmetric Functions

- Recall:
	- m_{λ} are monomial symmetric functions
	- $-p_{\lambda}$ are the power sum symmetric functions.
- Jack functions are a one parameter generalization of the Schur functions.
- Notation: We write $J_{\lambda}(x_1, x_2, \ldots, \alpha)$ for the Jack function corresponding to the partition λ .
- They are characterized by satisfying the following three conditions.
	- Orthogonality: $\langle J_{\lambda}, J_{\mu} \rangle = 0$ when $\lambda \neq \mu$ where the scalar product is defined by $\langle p_{\lambda}, p_{\mu} \rangle =$ $\delta_{\lambda\mu}z_{\lambda}\alpha^{\ell(\lambda)}$.
	- Triangularity: Select coefficients $v_{\lambda\mu}(\alpha)$ so that

$$
J_{\lambda} = \sum_{\mu} v_{\lambda\mu}(\alpha) m_{\mu}.
$$

Then $v_{\lambda\mu}(\alpha) = 0$ unless $\mu \leq \lambda$ (dominance order). In other words, the c.o.b. matrix from the m basis to the J basis is upper triangular. Uh, from what to what?

- Normalization: If $|\lambda| = n$, then the coefficient $v_{\lambda 1^n}$ of $x_1 x_2 x_3 \cdots x_n$ of J_n is n!.
- I won't prove this. (Stanley doesn't either.)
- Here are a couple down-to-earth examples.

$$
J_1(x_1, x_2,...; \alpha) = x_1 + x_2 + x_3 + \cdots
$$

$$
J_{1^n} = n!m_{1^n} = n!e_n
$$

- Question: So how do we specialize to the Schur symmetric functions?
- Identify λ with its Young diagram.
- **Def'n:** The hook length of the box $\Box \in \lambda$ is $h(\Box) = a(\Box) + l(\Box) + 1$.

• Def'n: We write

$$
H_\lambda=\prod_{\square\in\lambda}h(\square)
$$

for the product of all the hook lengths of λ .

• Example: Let $\lambda = (3, 3, 2)$.

– The hook length of the red box is 3.

– Each box contains its hook length in the tableau below.

 $-$ So $H_{\lambda} = 5 \cdot 4 \cdot 2 \cdot 4 \cdot 3 \cdot 1 \cdot 2 \cdot 1 = 960.$

- Answer: $J_{\lambda}(x_1, x_2, x_3, \ldots; 1) = H_{\lambda} s_{\lambda}(x_1, x_2, x_3, \ldots).$
- Proof (sketch): Stanley chapter 7 explains how s_λ satisfies the first two conditions. What is the coefficient of $x_1 x_2 \cdots x_n$ in s_λ ? It's $f^\lambda = \frac{n!}{H_\lambda}$.
- Now let's talk about how to evaluate nontrivial scalar products. We'll need to define an alpha generalization of hook length.
- Def'n: We say $j_{\lambda} = \langle J_{\lambda}, J_{\lambda} \rangle$.
- Def'n: For a partition λ define

$$
\begin{split} h_\lambda^*(\Box) &= \ell(\Box) + \alpha(a(\Box)+1) \\ h_\lambda^\lambda(\Box) &= 1 + \ell(\Box) + \alpha \cdot a(\Box). \end{split}
$$

In other words, arm boxes contribute an α to the hook length and leg boxes contribute a 1 to the hook length. The pivot box contribution is the difference between the upper and lower hook lengths. In the upper hook length the pivot gets an α and in the lower hook length it gets a 1.

- Note that this is the normal hook length when $\alpha = 1$.
- Prop: We have

$$
j_\lambda=\prod_{\square\in\lambda}h_\lambda^*(\square)h_\ast^\lambda(\square).
$$

- I won't prove this today.
- Example: Let $\mu = (3, 2)$. Then j_{μ} is the product of all of the expressions in the boxes below.

